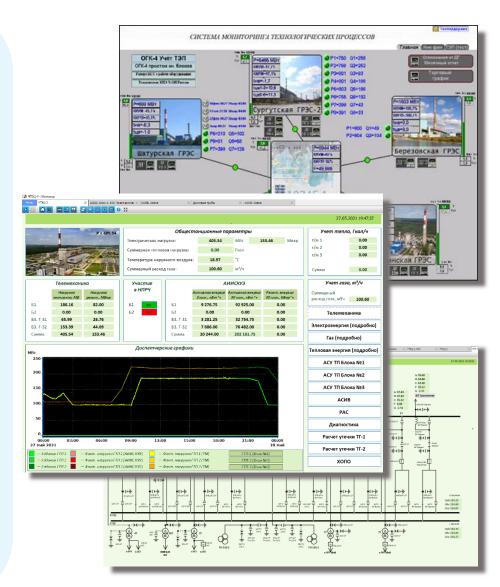
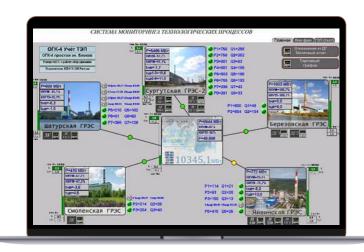

Для задач учета энергоресурсов, сбора, консолидации и анализа технологических данных



- Дельта-К кроссплатформенный программный продукт для создания автоматизированных информационно-измерительных комплексов, систем учета энергоресурсов, диспетчеризации, технологического мониторинга, консолидации и обработки технологических данных предприятий. Внесена в реестр отечественного ПО, запись №12095 от 22.11.2021.
- Дельта-К работает под управлением ОС Windows и ОС Linux
- Дельта-К масштабируемое решение, одинаково эффективно как для небольших систем, реализованных на одном компьютере, так и для больших распределенных автоматизированных систем сбора и обработки технологических данных.
- Дельта-К поддерживает широкий спектр протоколов и методов обмена данными, а продуманная и гибко конфигурируемая архитектура позволяет в короткие сроки разворачивать автоматизированные системы любого назначения и масштаба.
- В среде Дельта-К имеются удобные средства для разработки произвольных пользовательских алгоритмов, что позволяет встраивать в систему любые расчетные задачи


Технологии платформы Дельта-К

Класс системы: Система управления технологической информацией (PIMS)

С точки зрения информационных технологий Платформа Дельта-К решает следующие задачи:

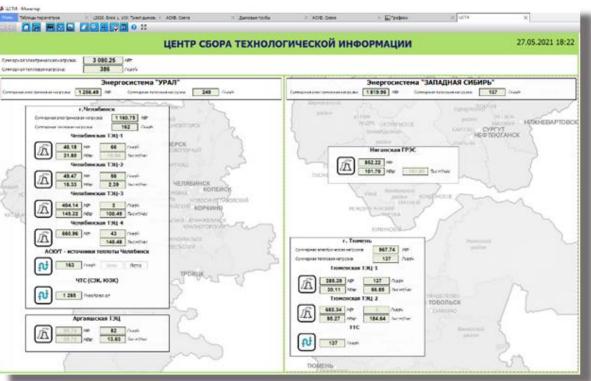
- Построение единого источника выверенных технологических данных с удобной визуализацией...
- Нормализация, очистка данных, ликвидация пробелов в данных.
- Обогащение первичных данных расчетными параметрами, включая экономические.
- Создание объективной базы для внедрения предиктивной аналитики и других решений из области ИИ.

Применимость Дельта-К на предприятии

Дельта-К программный комплекс для сбора и обработки технологических данных, управления и визуализации – от уровня отдельного узла учета, контроллера или измерителя до уровня предприятия или корпорации

Выгода для пользователя

Благодаря единому решению для сбора и регистрации параметров технологических данных пользователь экономит на прикладном ПО. Но самое главное, пользователь с одного рабочего места получает информацию не только о работе всех систем своего предприятия, но и об эффективности производства в целом.


Дельта-К - решение для любых масштабов

Для локальных систем

И для очень больших приложений

Выгода для заказчика

Благодаря уникальной гибкости и масштабируемости системы пользователь получает защиту инвестиций – средства, вложенные в локальную систему, никогда не будут потеряны при изменении размерности приложения или его интеграции с другими системами.

Дельта-К – единая платформа интеграции

Опыт внедрений, а также постоянное развитие в период эксплуатации систем на базе Дельта-К позволил отработать процесс сбора и регистрации больших массивов данных практически из любых систем источников - программируемых контроллеров, цифровых измерителей, вычислителей энергоресурсов, электросчетчиков, автоматизированных систем, баз данных, эл. сообщений и т.д. Причем опрос систем источников распределяется по отдельным потокам, что с одной стороны полностью разделяет разнородные потоки данных, а с другой стороны гарантированно обеспечивает требуемый период опроса, независимо от количества систем источников и скорости опрашиваемых цифровых шин обмена данными.

EMERSON

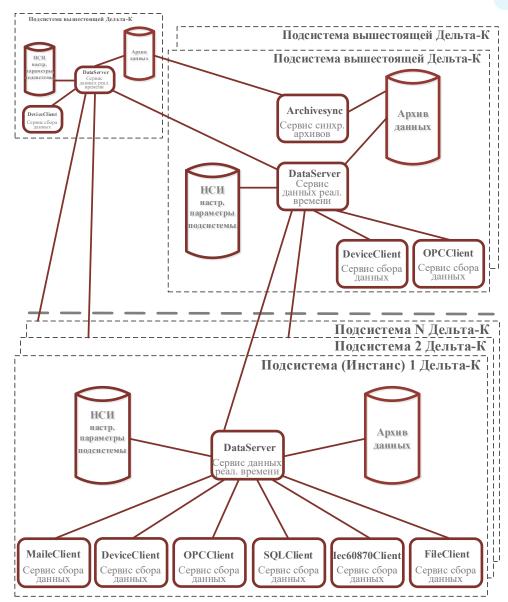
lodbus

elster

Дельта-К - основа корпоративных решений

Дельта-К адаптируется к нуждам любого промышленного предприятия благодаря средствам разработки расчетных алгоритмов, позволяющих в реальном времени обрабатывать технологические данные, получаемые из систем-источников.

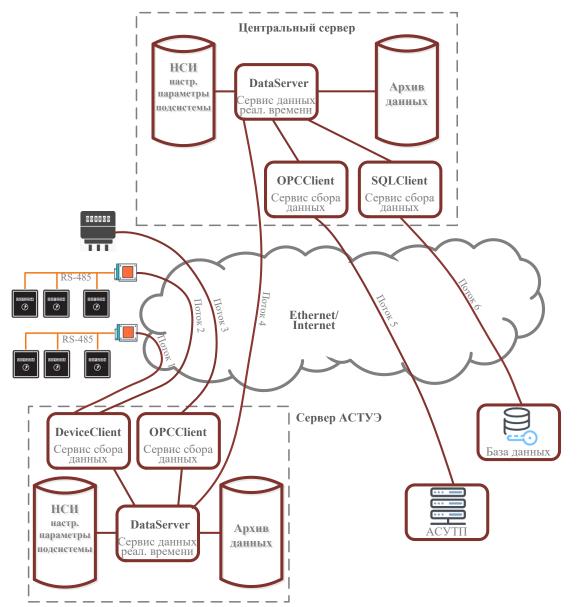
При необходимости расчетные алгоритмы встраиваются непосредственно в службу опроса, как правило, для оперативного расчета вычисляемых значений или расширенного контроля за определенными параметрами. Алгоритмы обработки интервальных значений реализуются в среде специализированной службы. В любом случае алгоритмы описываются интуитивно понятными текстовыми скриптами, что позволяет быстро реализовать любую задачу.


АРХИТЕКТУРА СИСТЕМЫ

Дельта-К – общие положения

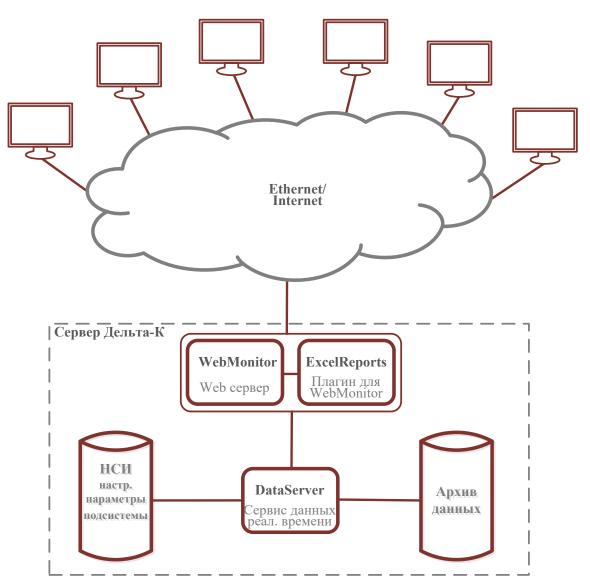
- Система Дельта К это набор взаимодействующих сервисов, которые могут запускаться как на одном, так и на разных аппаратных (виртуальных) серверах. Каждый сервис реализован под определенные задачи, взаимодействие настраивается через НСИ и конфигурационные файлы, реализовано множество функциональных сервисов, что позволяет очень гибко конфигурировать системы практически любого назначения, а также в последствии их неограниченно развивать и расширять.
- Чрезвычайная универсальность и гибкость конфигурирования Дельта-К основана на произвольном разделении обрабатываемых параметров на подсистемы (инстансы). Каждая подсистема самодостаточна и функционально закончена, имеет отдельный сервис реального времени (ядро), архив, визуализацию и т.д. Функциональный состав подсистемы определяется проектом. В любой момент можно добавить новую подсистему, что не влияет на работу других подсистем.
- Одна подсистема Дельта К может выступать источником данных для другой подсистемы Дельта К, что позволяет в виде иерархических структур, описать информационные модели целых предприятий.

Пример: При построении системы диспетчеризации на каждом объекте ставиться контроллер с подсистемами реализующими задачи реального времени – АСУ, учет, мониторинг и т.д. Эти подсистемы могут являться источниками данных для других, вышестоящих систем Дельта-К (развернутых, например, в головном офисе) и т.д.

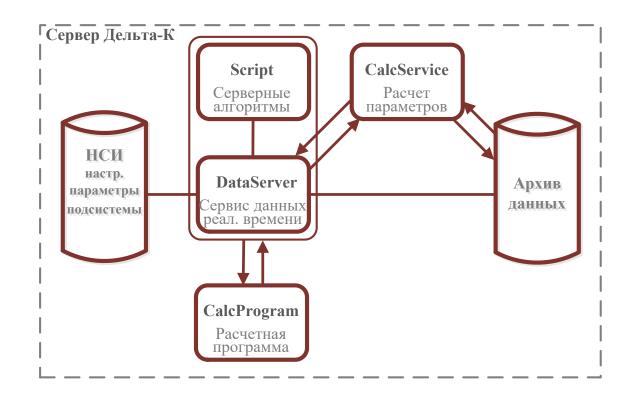


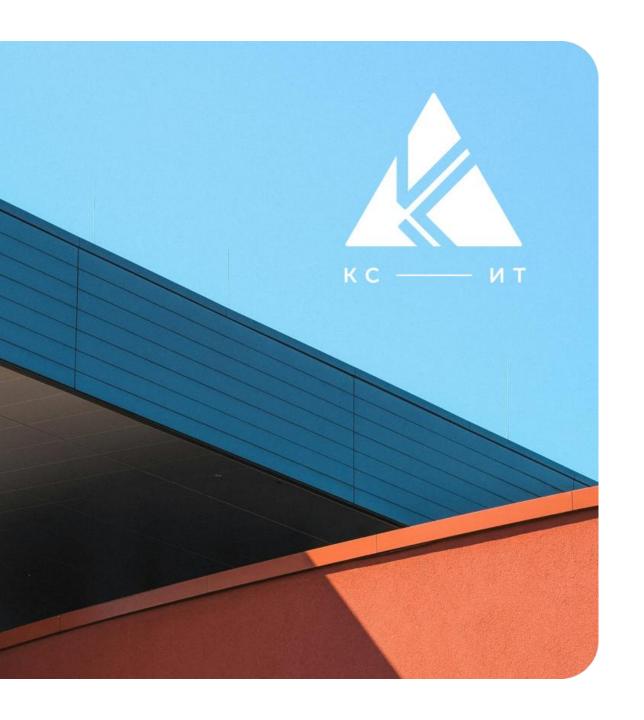
Дельта-К – пример построения системы

На схеме приведена типовая структура организации системы опроса с двумя серверами Дельта-К, на одном реализована система АСТУЭ, другой является центральным сервером консолидации данных предприятия. Система в целом имеет следующие особенности:


- Из набора сервисов Дельта-К, как из кубиков конфигурируется любая система. Сервисы работают параллельно, независимо друг от друга, т.е. все источники опрашиваются параллельно.
- Информация о взаимосвязях сервисов, правил опроса, списков параметров хранится в настроечной базе НСИ.
- При настройке сервисов сбора данных опрос различных приборов или сегментов из приборов можно запустить в отдельных потоках, что позволяет для каждого параметра гарантировано обеспечить любой период опроса, независимо от числа опрашиваемых приборов.

Дельта-К – представление данных


- WebMonitor это служба системы Дельта-К, запускающая для каждого пользователя сессию Monitor удаленно на WEB сервере, через протокол HTTP/HTTPS.
- WebMonitor может применяться также в качестве прокси для организации канала связи HTTP поверх нативных протоколов Дельта (ClientLL + SQL).
- ExcelReport плагин для Monitor, с реализацией стандартных отчетов в виде xlsx-документов. Плагин генерирует xlsx-отчеты, на основании макетов отчетов, являющихся xlsx-документом, содержащим страницу определенного формата, где определено, какие поля ввода нужно заполнить, какие действия нужно выполнить для построения отчета и все другие необходимые настройки.
- Количество подключенных пользователей системой не ограничивается.



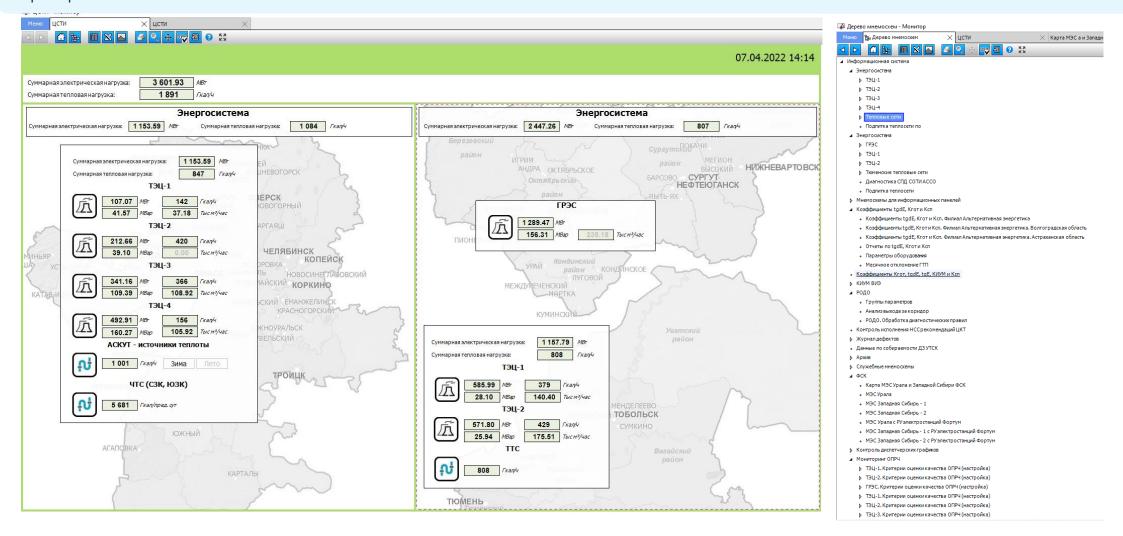
Дельта-К – обработка данных

- Обработка оперативных данных, как правило, реализуется в пользовательских скриптах, выполняемых сервисом реального времени (DataServer).
- Обработка архивных данных, реализация расчётных задач средней сложности, реализуется в пользовательских скриптах выполняемых специализированным сервисом расчета (CalcService).
- Сложные, специфические расчетные задачи реализуются в виде отдельных программ, работающих с Дельта-К через описанный API.

БОЛЬШИЕ ИНФОРМАЦИОННО-ТЕХНОЛОГИЧЕСКИЕ СИСТЕМЫ ПРОМЫШЛЕННЫХ ПРЕДПРИЯТИЙ

Корпоративные системы на Дельта-К

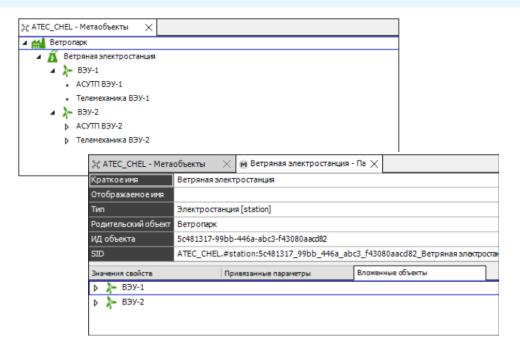
- Система мониторинга технологических процессов (СМТП) ПАО «Юнипро» (2007-2025 гг.) объединяет технологические данные пяти (5) электростанций, собирается более 150 тысяч технологических параметров, данные представляются на электростанциях и в центральном аппарате в г. Москва. В СМТП реализовано множество расчетных эксплуатационных и диагностических задач, автоматически формируется отчетная документация.
- Система управления диспетчерским графиком (СУДГ) ПАО «ИНТЕР РАО Электрогенерация» (2010-2025 гг.) объединяет технологические данные семнадцати (17) электростанций, собирается более 150 тысяч технологических параметров, данные представляются на электростанциях и в центральном аппарате в г. Москва.
- Центр сбора технологической информации (ЦСТИ) ПАО «Форвард Энерго» (2015-2025гг.) объединяет технологические данные восьми (8) тепловых электростанций, тепловых сетей двух мегаполисов, более пяти ветропарков, несколько гелиопарков, собирается более 250 тысяч технологических параметров, данные представляются на всех филиалах и в центральном аппарате в г. Москва. Реализовано множество расчетных задач, автоматически формируется сложная отчетная документация.

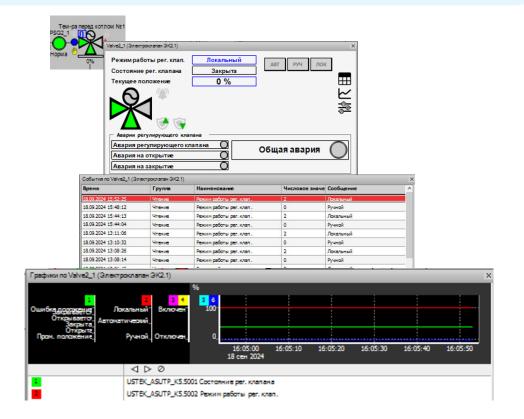


Общие принципы Дельта-К

Модульная, децентрализованная структура Дельта-К позволяет быстро разворачивать большие распределенные системы сбора и обработки технологических данных уровня корпорации. Системы - источники данных, а также расчетные задачи описываются в виде функционально независимых модулей, запускаемых на одном или нескольких серверах, что позволяет неограниченно развивать функционал корпоративной технологической системы.

Дельта-К – структурирование данных

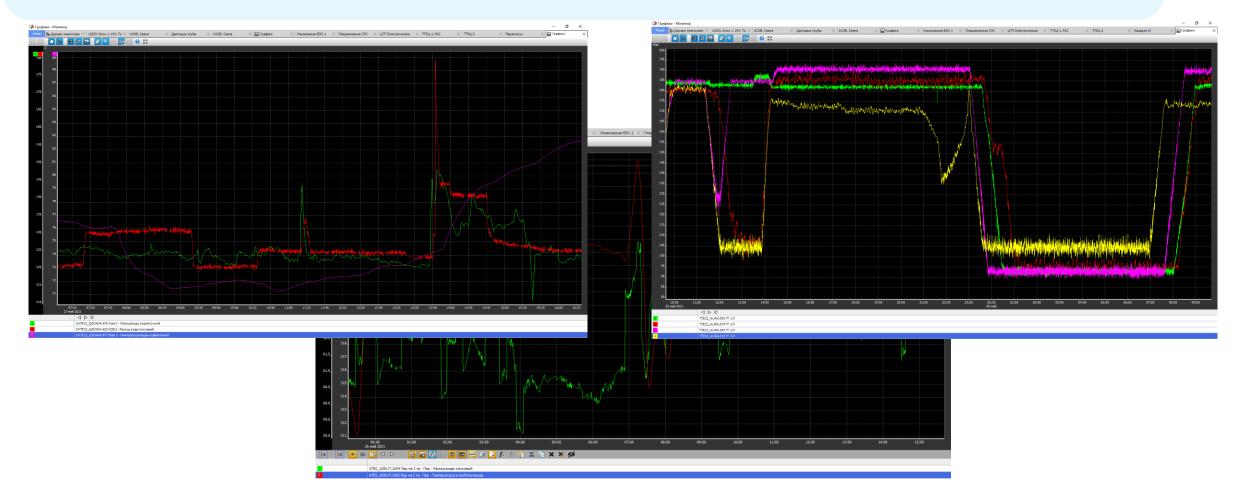

Собираемые параметры структурируются по объектам, и по агрегатам. Интерфейс пользователя в Дельта-К настраивается под любые технологические задачи, легко масштабируется от корпорации до отдельного технологического объекта и устройства. Данные на мнемосхемах могут собираться с разных физических серверов. Пользовательский интерфейс Дельта-К функционален, подходит и для отображения ключевых показателей работы корпорации, учета ресурсов, а также для анализа режимов работы технологического оборудования.



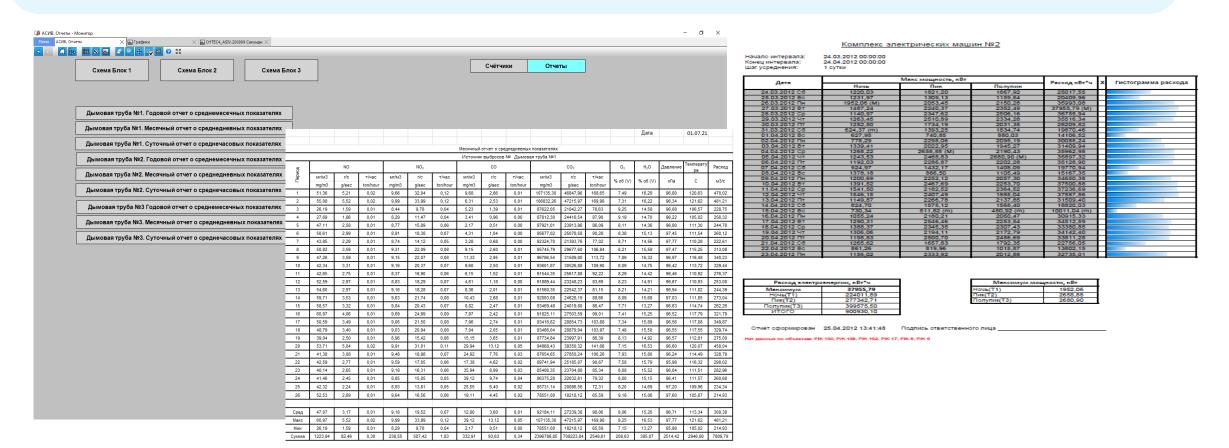
Дельта-К – метаданные, объектная модель

Понятие «Метаобъект» в Дельта-К объединяет список параметров и другую информацию (Метаданные) в единую сущность. Это могут быть измеренные значения, текст, произвольные файлы и другая информация, описывающая некий объект внутри подсистемы Дельта. Например, к объекту «датчик» привязано измеренное значение, сроки поверки, отметки о ремонтах, сканированные документы – схемы включения, руководства и т.д. В подсистеме Дельта для метаобъекта объявляется метатип, на основании которого создаются экземпляры метаобъектов – метаузлы, обладающие уникальными идентификаторами, именами и множеством привязанных параметров. Между экземплярами метаобъектов можно устанавливать произвольные связи и тем самым описывать объектную модель устройства, установки предприятия и т.д. При необходимости к метаобъектам привязываются вложенные экранные формы, через которые, например, можно организовать полную функциональную наладку экземпляра метаобъекта (например ПИД-регулятор, задвижка и т.д.).

Дельта-К – интерфейс оператора

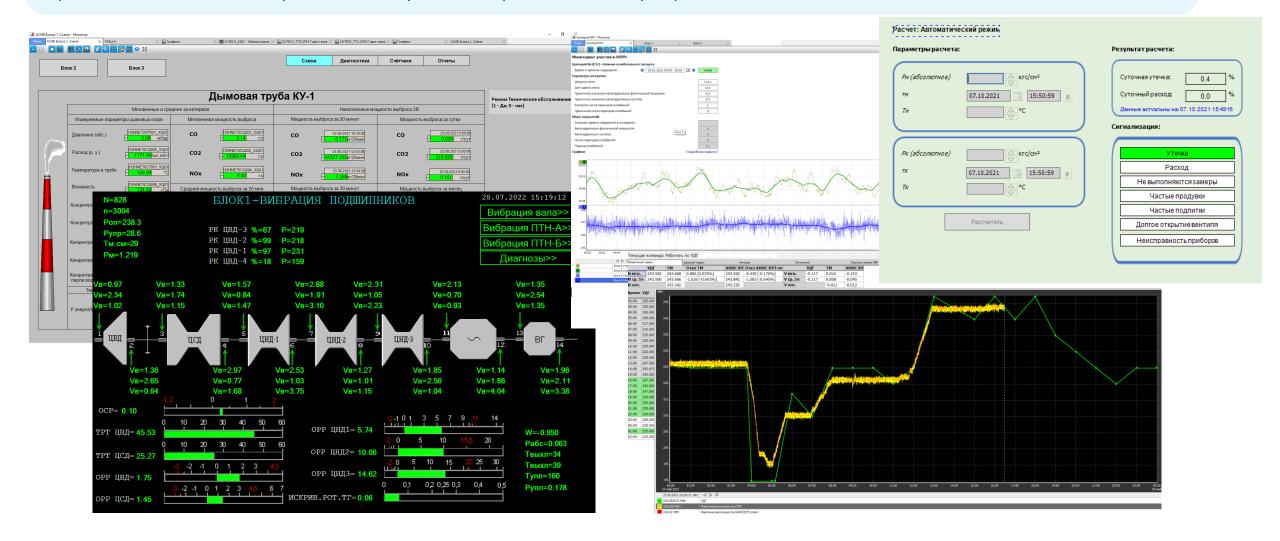

В Дельта-К реализуется любой дизайн мнемосхем. Можно повторить дизайн мнемосхем подключенных локальных АСУТП, что для работников предприятий бывает очень удобно. Можно реализовать индивидуальный, единый дизайн для всего предприятия.

Дельта-К – анализ данных


В Дельта-К реализован мощный и одновременно простой в использовании инструмент анализа технологических параметров в виде графиков и динамических трендов. Интересующий параметр или группа параметров просто «перетаскивается» в поле графика с любых мнемосхем, количество наложенных графиков не ограничивается. Изменение масштаба графиков, или анализ небольшого участка тренда выполняется интуитивно, с помощью мыши. Данный инструмент незаменим при анализе работы оборудования и разбора аварийных ситуаций.

Дельта-К – отчёты

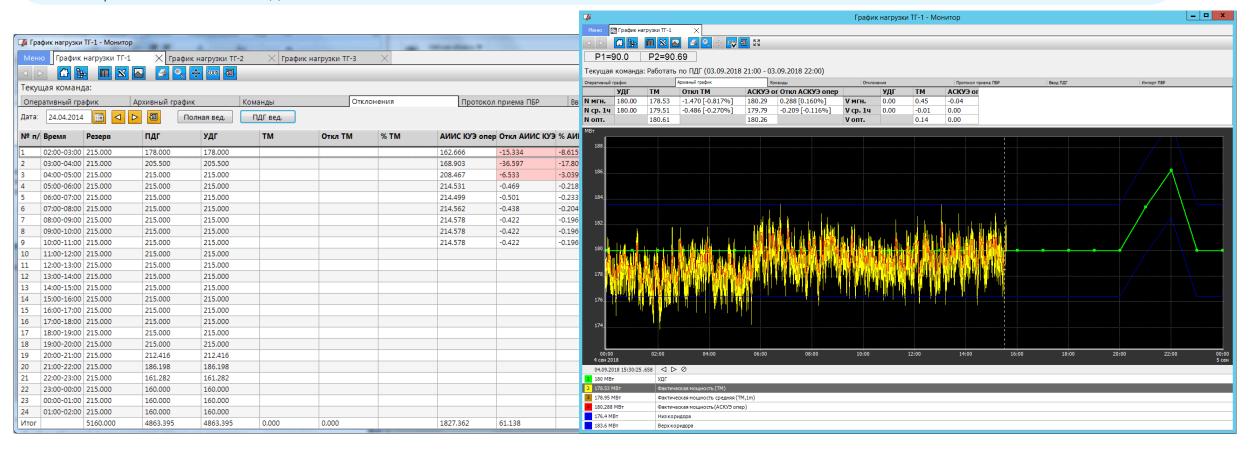
В Дельта-К реализован мощный и одновременно простой в использовании инструмент формирования отчетов, формируемых как в ручную, так и автоматически в заданное время. Отчеты формируются в формате excel. В системе можно предопределить различные виды отчетов, как по форме так и по содержанию, автоматически заполняемые определенными данными. Также оператор может сформировать произвольный отчет «перетаскиванием» интересующих параметров с любых мнемосхем в мастер отчетов, перед формированием отчетов можно задать различные виды обработки, например усреднение значений по выбранному интервалу. Для формирования отчетов Microsoft Excel не нужен.



РАСЧЁТНЫЕ ЗАДАЧИ

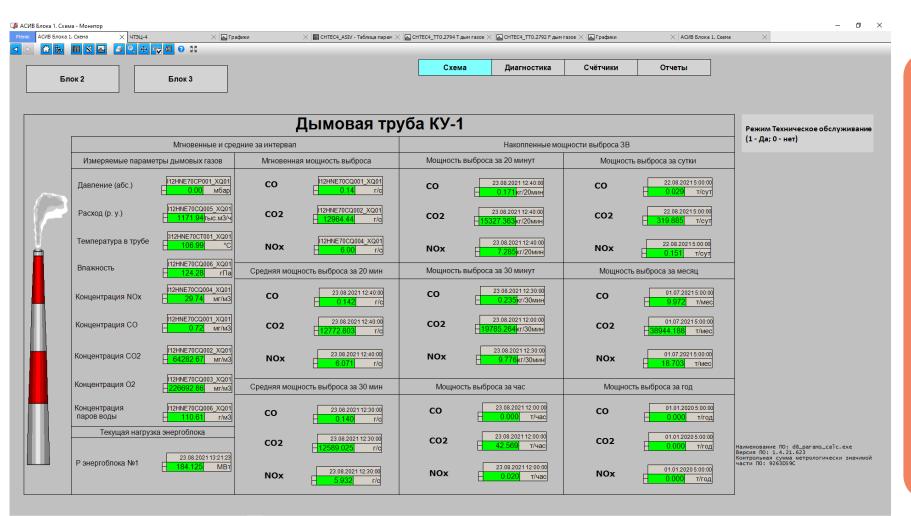
Дельта-К – расчётные задачи

В Дельта-К реализованы службы оперативной обработки принимаемых данных, выполняющие пользовательские алгоритмы, написанные в виде интуитивно понятных текстовых скриптов. Реализовать можно как небольшие скрипты, например расчет в реальном времени вычисляемого параметра, так и расчетные задачи с формированием необходимых архивных значений. Также системой предоставляются различные виды интеграций со сторонними расчётными программами.



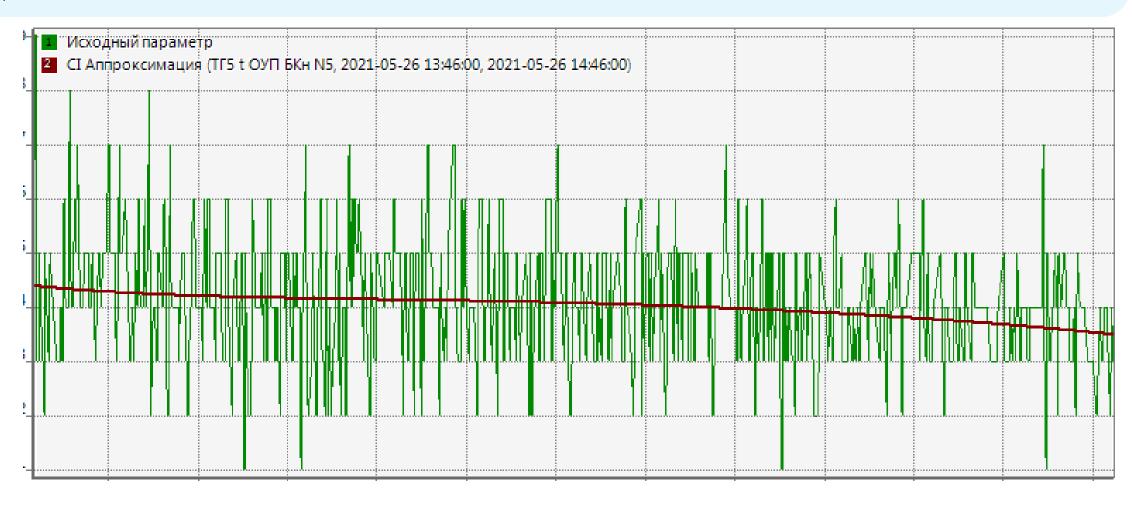
Дельта-К – диспетчерские графики

Расчетная задача «Диспетчерские графики» в составе Дельта-К выполняет следующие функции:


- Сбор и интеграция данных по режиму работы станции, поступающих из систем телемеханики, АИИС КУЭ, систем АСУ ТП, а также заданий по нагрузке.
- Предоставление оперативному и административному персоналу станции оперативной информации о текущей нагрузке станции и заданий по нагрузке (РДГ, ПБР, УДГ).
- Корректировка задания в соответствии с командами, поступающими из диспетчерского управления.
- Анализ сохраненных значений РДГ, ПБР, УДГ и фактической нагрузки.
- Построение отчетных ведомостей.

Дельта-К – Система автоматического измерения

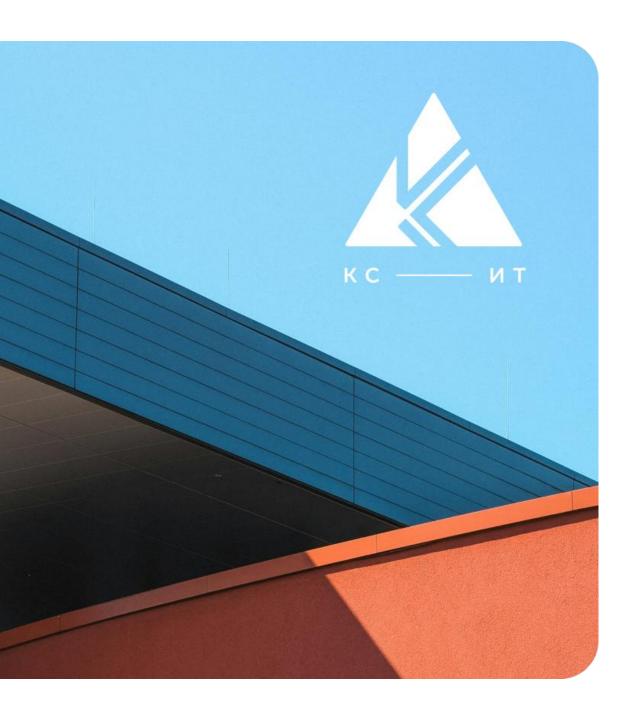
выбросов



Автоматизированная система измерения выбросов (АСИВ) обеспечивает измерение и учета массы вредных выбросов в атмосферу, выбрасываемых типовой электростанцией. Комплект измерительного оборудования устанавливается на каждой дымовой трубе. Верхний уровень АСИВ реализован средствами Дельта-К. Измерительный комплекс АСИВ аттестуется как единичное средство измерений.

Дельта-К – Предиктивная диагностика

В Дельта-К реализованы алгоритмы предиктивной диагностики, оперирующие временными рядами сигналов на очень больших промежутках времени. Алгоритмы предиктивной диагностики хорошо себя зарекомендовали в предупреждении аварийного останова энергоблоков при разрушении подшипниковых опор. В данном случае из временных рядов СКЗ вибрации выделяются тенденции изменения вибрационного состояния агрегата во времени, затем по сформулированным технологами критериям формируются диагностические сигналы.



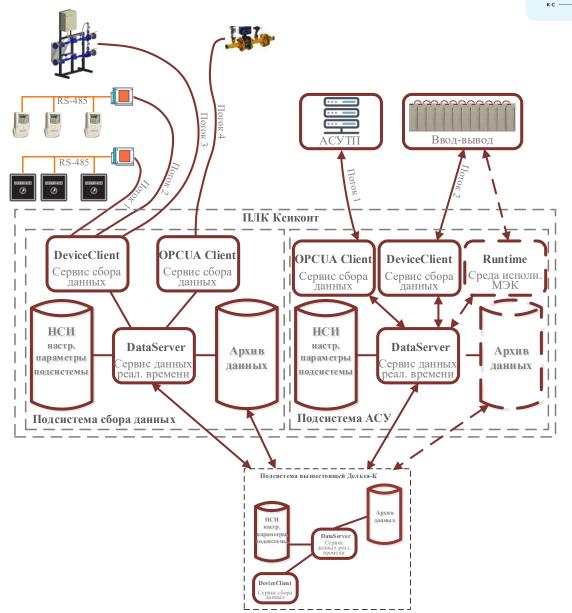
Дельта-К – Самодиагностика системы

В Дельта-К реализованы алгоритмы оперативной диагностики, основанной на протоколе SNMP, что актуально если информационная система состоит из множества распределенных серверов сбора данных.

V2 <i>п/п</i>	Узел ЦСТИ	Объем диска С:, ГБ	Занято на диске С:, ГБ	Сво бодно на диске С:, ГБ	Сво бодно на диске С:, %	Объем диска D:, ГБ	Занято на диске D:, ГБ	Сво бодно на диске D:, ГБ	Свободно на диске D:, %	Состояние сетевых интерфейсов	Состояние блоков питания
	ТЭЦ-1	279	65	215	77	1118	808	310	28		
	ТЭЦ-2	279	85	194	69	1118	1020	98	9		
;	ТЭЦ-3	559	260	299	53	2236	1351	884	40		
	ТЭЦ-4	279	78	202	72	1118	1040	78	7		
	ТЭЦ-1	559	63	496	89	2236	1086	1150	51		
;	ТЭЦ-2	279	53	226	81	1118	1109	8	1		
,	ГРЭС	100	67	33	33	1576	1541	35	2		
;	тепловые сети	279	279	0	0	838	428	411	49		
.0	тепловые сети ВЭС	Общее состояние сервера В н События системного лога Нет сос Модель сервера ProLiant DL Номер продукта 653200-82*		ощений Модель процессора		В норме Intel Xeon 2100 МГц 6		Оперативная паг Объем памяти Частота памяти	16384 Mō		
		Серийный номер ЕG0600FBVFP В норме	559 Гб EG0600FBVF В но	5		12		656362-B21	Состояние систем IP адрес сервера (
)		559 Гб EG0600FBVF В но	Р 559 Гб		Сетевые интерфейсы		В норме 31 Вт	Общее состояние Состояние батарея Статус массива RA	и массива В норме	
	\$	В норме	559 Гб EG0600FBVF В но 559 Гб EG0600FBVF	ррме	iLo	100 Мбит Мбит Откл	. Откл. 3 Eth4	656362-B21 В норме	С: 496 Гб свободно Статус массива RA	о из 559 Гб AID-5: В норме	
		В норме	Вно	ррме Вентилято	(ping)			41 Вт Вентипятор 6	D: 1150 Гб свободи Общее состояние Температура		
		Отсутствует	Отсутствует	Нормальная с		я скорость Нормал	пьная скорость Нор	мальная скорость	romnoparypa	В порше	

В ЗАДАЧАХ УПРАВЛЕНИЯ ПРОИЗВОДСТВЕННЫМИ ОБЪЕКТАМИ

Дельта-К в управлении промышленными объектами



На схеме приведен пример организации системы управления локальным объектом средствами платформы Дельта-К, при этом обеспечивается сбор и регистрация данных с различных источников. В качестве аппаратной платформы используется промышленный безвентиляторный компьютер с ОС Linux (поддерживается как РС так и ARM архитектура). Для каждой задачи создается отдельная подсистема (инстанс), с собственной НСИ и работой независимо друг от друга.

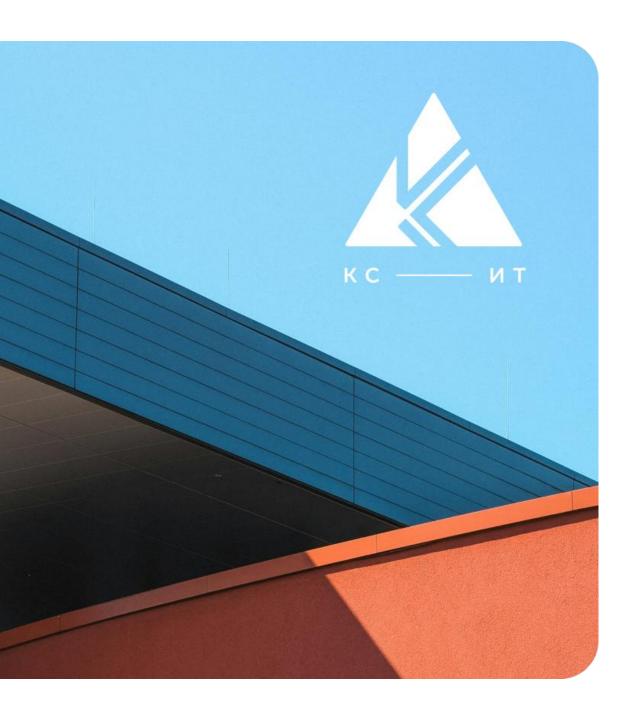
Задачи управления реализуются в среде Дельта-К, с использованием собственной библиотеки стандартных объектов, также возможна интеграция со сторонними средами разработки, например Codesys, ПОЛИГОН, или ПЛК.

Функционал стандартных объектов в среде Дельта-К описывается скриптами на встроенном языке формул (FL), либо С Sharp. Также в зависимости от задачи в подсистеме можно настроить локальный архив, либо работать без него.

Готовая библиотека функциональных объектов существенно сокращает время разработки управляющих программ и сроки ПНР на объекте. Визуализация на объекте реализуется стандартными средствами Дельта-К.

Автоматизированные системы управления

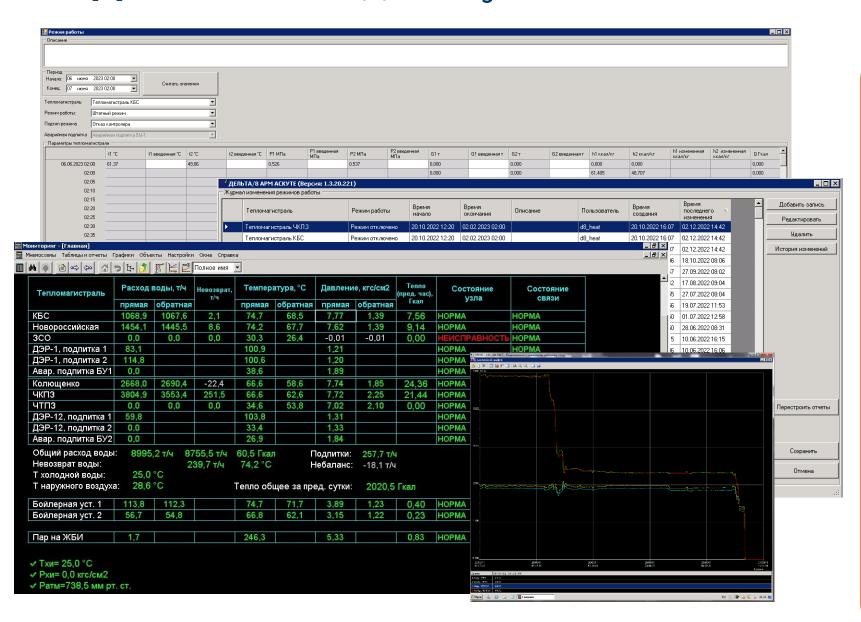
- Проектирование и внедрение АСДУ 13 котельных для АО«УСТЭК» в г. Тюмень. АСДУ проектировалось на базе ПЛК Ксиконт и ИП Дельта-К.
- Внедрение автоматического управления регуляторами турбогенератора № 8 Ульяновской ТЭЦ-1 средствами ПЛК Ксиконт и ИП Дельта-К. Подключение полевых сигналов выполнено через модули ввода-вывода серии МВ-210, производства ОВЕН.
- Проектирование полномасштабной АСУТП котлами К-1А, К-1Б Ульяновской ТЭЦ-2 на базе ПЛК Ксиконт и ИП Дельта-К. Реализация проекта намечена на 2026 год.
- Проектирование и внедрение САУ ГРП 1,2 и АСДУ внешними объектами Ижевской ТЭЦ-1 на базе ПЛК Siemens и ИП Дельта-К.
- Разработка и внедрение на базе ИП Дельта-К АСДУ комплексом теплоснабжения г. Шарыпово со стороны Березовской ГРЭС, с модернизацией локальных АСУТП объектов.
- Модернизация АСУ ТП энергоблока №3 ТЭЦ Мечел с заменой контроллера и актуального ПТК Freelance ABB, с внедрением расчета ТЭП средствами ИП Дельта-К.
- Внедрение системы автоматического управления регуляторами котла № 9 Челябинской ТЭЦ-2 на базе ПТК Siemens PCS-7.
- Доработка АСУТП топливоподачи ТП 500 и АЗБ-2 Рефтинской ГРЭС, построенной на базе ПТК Siemens PCS-7.

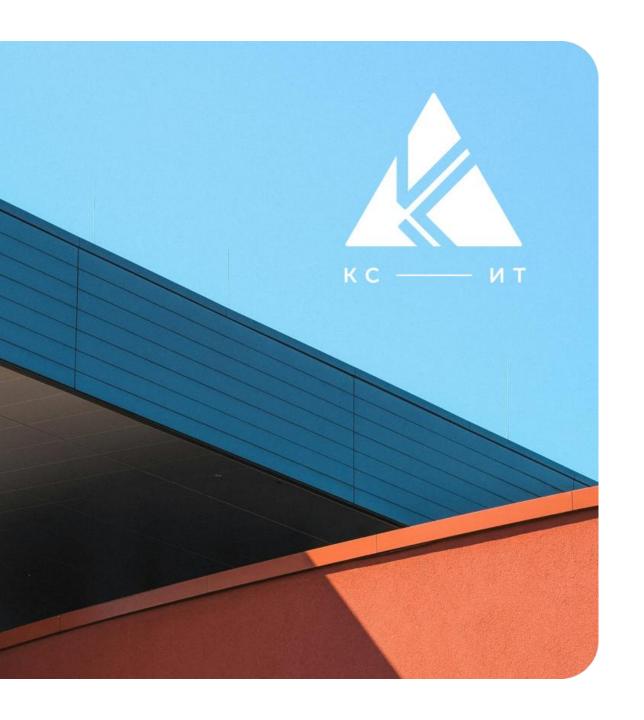


В СИСТЕМАХ УЧЁТА ЭНЕРГОРЕСУРСОВ

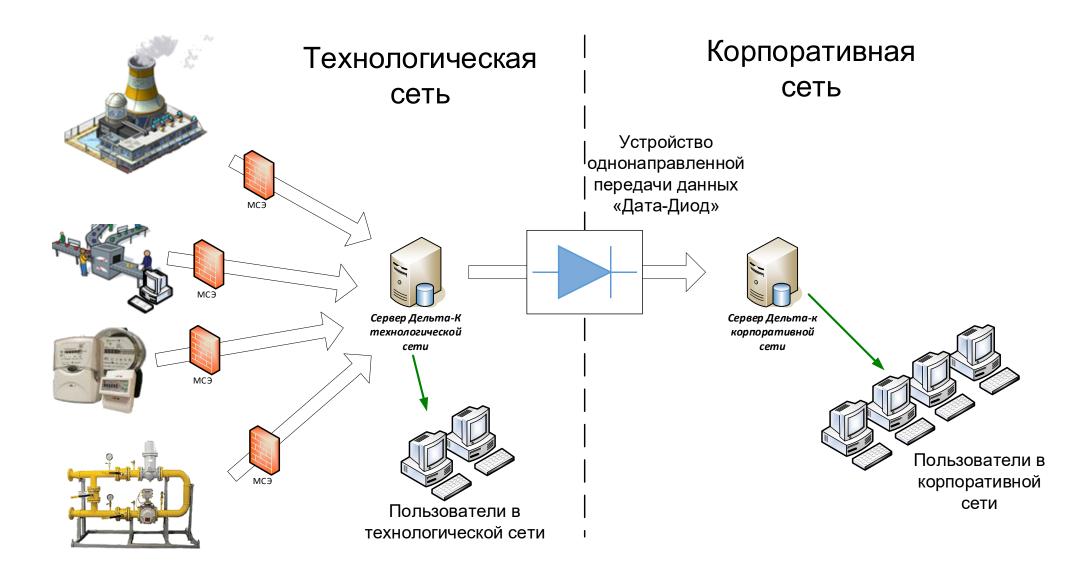
Автоматизированные системы учёта

- Автоматизированная система коммерческого учета тепловой энергии (АСКУТЭ) Челябинской генерации ПАО «Форвард Энерго». АСКУТЭ учитывает всю тепловую энергию производимую пятью электростанциями, внесена в гос. реестр средств измерений. В АСКУТЭ реализован сложный алгоритм распределения коллекторной подпитки.
- Автоматизированная система коммерческого учета газа (АСКУГ) Верхне-Тагильской ГРЭС, Среднеуральской ГРЭС, Сургутской ГРЭС-2, Костромской ГРЭС, Пермской ГРЭС, Нижневартовской ГРЭС, Ириклинской ГРЭС и т.д. Общестанционные АСКУГ это автоматизированные комплексы, которые должны измерять расход газа с относительной погрешностью не более 0,8%, для этого используются высокоточные средства измерений и автоматические анализаторы определения физических свойств природного газа.
- Автоматизированные системы коммерческого/технического учета энергоресурсов (АСКУЭР), реализованы на всех заводах ПАО «Силовые машины», АО «КНАУФ ПЕТРОБОРД», ЈТІ ООО «КРЕС НЕВА» и т.д. Для АСКУЭР характерно объединение в единую систему разнообразных приборов учета, например, электросчётчики, тепло, водо, газо счетки и т.д.




Дельта-К в задачах учёта тепла на источниках

АСКУТЭ обеспечивает:


- Выполнение требований Правил учета тепловой энергии;
- Проведение сертификационных мероприятий для легитимности данных формируемых АСКУТЭ станций;
- Автоматизации деятельности ПТО по учету тепловой энергии;
- Обеспечение текущими данными оперативный персонал
- Передача данных в сторонние диспетчерские службы
- Контроль за тепловыми и гидравлическими режимами работы систем теплоснабжения;
- Архивация исходных данных и результатов учета, возможность их ретроспективного анализа.
- Формирование отчетной документации в автоматическом и ручном режимах
- Интерфейс для ручной замены некорректных учетных данных, при аварийных ситуациях, в соответствие с утвержденным регламентом между контрагентами.

В ЗАДАЧАХ ОБЕСПЕЧЕНИЯ ИНФОРМАЦИОННОЙ БЕЗОПАСНОСТИ

Применение дата-диодов в комплексе с **Дельта-К**

Технологии Дельта-К

- Нет технологических ограничений на объем хранимой информации с сохранением одинаковой скорости доступа к информации за любой промежуток времени. Существуют реализации с глубиной хранения более десяти лет.
- Нет технологических ограничений на количество параметров в системе. Объем хранимых данных ограничен только используемыми техническими средствами.
- Гарантированная запись значений параметров в архивную базу данных реального времени, со скоростью более 250 тысяч значений в секунду на реально работающем сервере с количеством обрабатываемых параметров более трёхсот тысяч.
- Возможность проводить вычисления новых параметров «на лету».
- Возможность последовательного «проваливания» с главной мнемосхемы Центрального аппарата до любой единицы оборудования, например до датчика системы АСУТП.

Технологии Дельта-К (продолжение)

- Распределенная архитектура позволяет балансировать нагрузку на каналы передачи данных и позволяет хранить информацию по месту наиболее частого их использования.
- Развитая система по созданию и модификации мнемосхем.
- Наличие как «толстого», так и «тонкого» клиентов.
- Возможность построения произвольного количества графиков (трендов) и отчетов для разных параметров для проведения анализа.
- Возможность создания произвольных отчетных форм в формате excel. Стоит отметить, что для формирования файлов отчетов пакет Microsoft Office не требуется. Открыть сформированный файл отчета можно любой программой, поддерживающий формат excel.

Поддержка от разработчика

Мы являемся разработчиками Дельта-К

- Внесение любых изменений в систему по требованиям заказчика (новые функции, новые виды представления, отчеты, нестандартные интерфейсы связи с системамиисточниками информации).
- Принципиальное отсутствие ограничений для модификации системы в интересах заказчика или реализации той или иной функции, в короткие сроки.
- Надежная и профессиональная команда. В настоящее время разработкой системы занимается второе поколение разработчиков, обеспечивая преемственность поколений.
- Компания обеспечивает активную поддержку и развитие ранее внедренных решений.

Лицензионная политика

- Нет ограничений на количество рабочих мест.
 Лицензируется только серверная часть системы.
- Стоимость одной лицензии ниже стоимости лицензий для аналогичных решений у других компаний, но не накладывает ограничений на количество клиентских рабочих мест.
- Обновление версий программного обеспечения и техническая поддержка в течении гарантийного периода и далее по договорам сопровождения системы.